STRATODEVILS ASU ASCEND S23

GENEVIEVE COOPER, BERKELEY ADAIR, ANYELL MATA, JESSE ONTIVEROS, ELIZABETH GARAYZAR, TAMIM ALSHARIF, WILSON LUU, MUHAMMED TOPIWALA, DEREK TALBOT

GOALS

PROFILE THE

ATMOSPHERE

SUCCESSFUL

LAUNCH AND

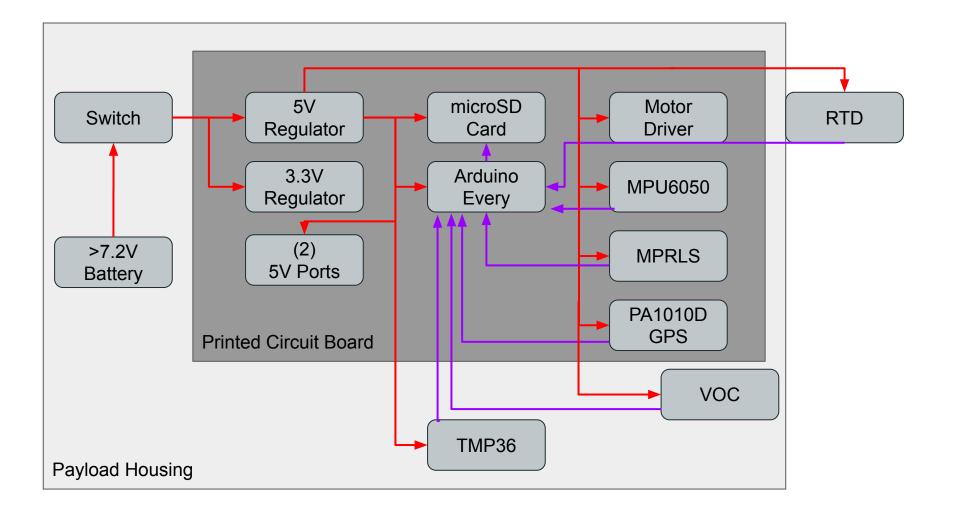
RETRIEVAL OF

PAYLOAD

DETERMINE

RADIATION

EFFECTS ON

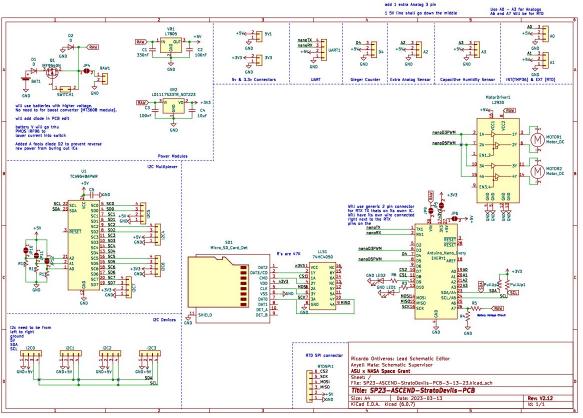

LETTUCE SEEDS

ESTABLISH CONNECTION WITH GROUND STATION

9

PAYLOAD STABILIZATION USING ADCS

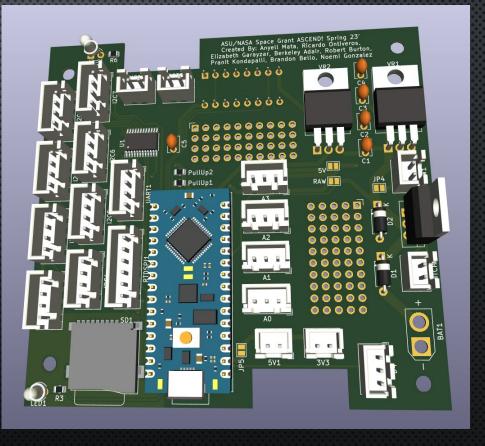
Q



SCHEMATIC

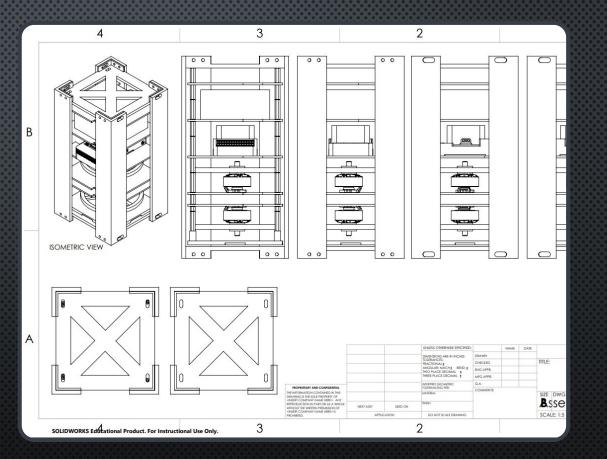
PROCESS/ DEVELOPMENT

- UNIVERSAL PCB SCHEMATIC
 WAS UPDATED THIS SEMESTER
- Updated power systems
- Added PMOS Switch
- CREATED EXTRA JST CONNECTIONS
- INTEGRATED SD CARD



PRINTED CIRCUIT BOARD

KCad


PROCESS/ DEVELOPMENT

- Designed a new PCB
- PC104 design standard for 1U CubeSats
- Extra Vias
- Designed to be stacked in payload housing

HOUSING

- MODULAR AND ADAPTABLE FOR FUTURE USE
- ALUMINUM CUBESAT
 DESIGN WAS TOO HEAVY (3.3LBS)
- Outer housing is 2U FOAM CORE
- INNER HOUSING IS PLA STACKS

Housing Analysis

The payload critical components did survive PCB Motors

The housing of the payload did not survive Cracked open A couple of PLA failure points

HAVING BETTER CORNER BEAMS WOULD HAVE BETTER DEALT WITH THE SITUATION. ALLOWING THE SHOCK TO GO THROUGH THE PAYLOAD

Key objectives met Module design of the payload helped in last minute touches and fixes Very simple to take apart and analyze due to the structure Created a mock CubeSat which teaches FUNDAMENTALS CubeSat system design

PROGRAMMING

- Implementation of sensor code
- Ensuring sensors function through testing
- CODE WRITTEN ARDUINO
 PROGRAMMING
- FILE SHARING THROUGH GITHUB
- DATA STORED IN SD AS A CSV FILE
- Website design

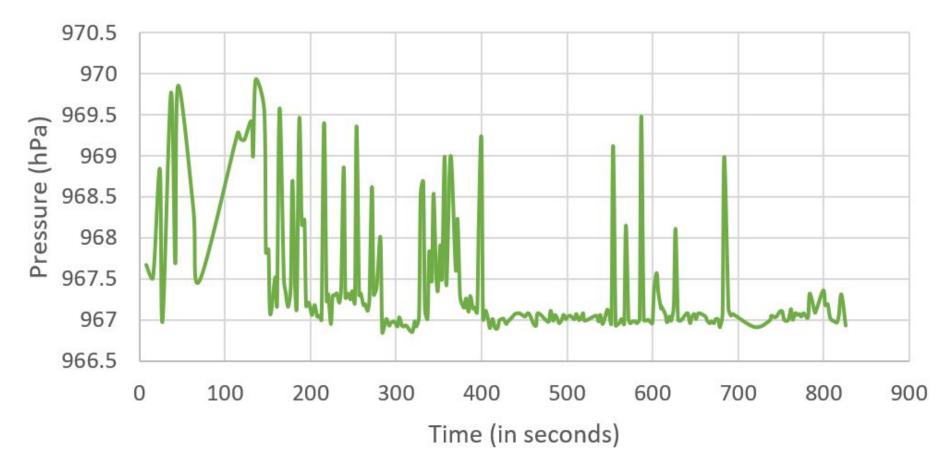
StratoDevils_Components_Code_V5 | Arduino 1.8.19

File Edit Sketch Tools Help

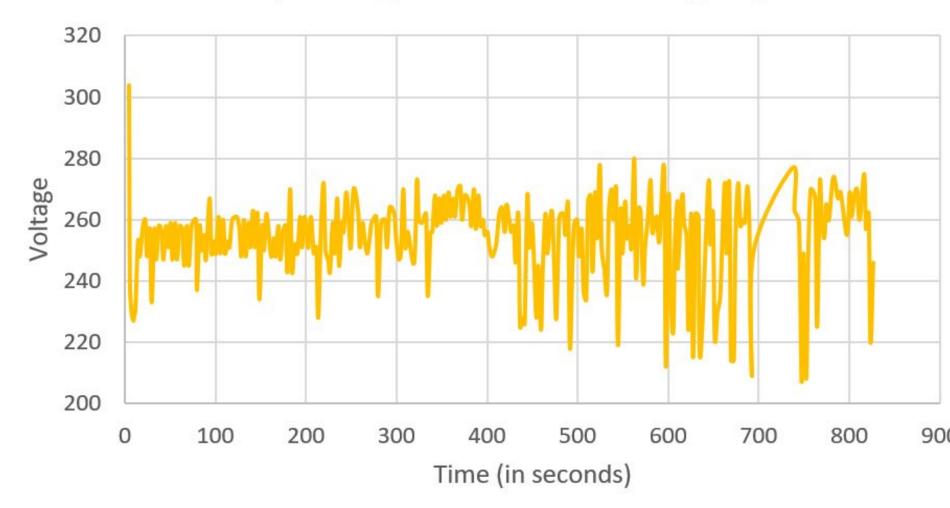
StratoDevils_Components_Code_V5

- 46 (defined(BUFFER_LENGTH) && BUFFER_LENGTH >= MAXBUF_REQUIREMENT)
- 47 #define USE_PRODUCT_INFO
- 48 #endif
- 49 // You dont *need* a reset and EOC pin for most uses, so we set to -1 and don't connect
- 50 #define RESET_PIN -1 // set to any GPIO pin # to hard-reset on begin()
- 51 #define EOC_PIN -1 // set to any GPIO pin to read end-of-conversion by pin
- 53 Adafruit_MPRLS mpr = Adafruit_MPRLS(RESET_PIN, EOC_PIN);
- 54 Adafruit_MPU6050 mpu;
- 55 Adafruit_TSL2561_Unified tsl = Adafruit_TSL2561_Unified(TSL2561_ADDR_FLOAT, 12345);
- 56 SoftwareSerial ss(RXPIN, TXPIN);
- 57 SensirionI2CSen5x sen5x; 58
- 59 unsigned long currentTime = 0;
- 60 float sensorVal;
- 61 float inTmpV;
 62 //float extTmpV;
- 63 boolean groundMode = 0;
- 64 // Variable for file name
- 65 char logFileName[16];
- 66 //Character strings for writing data to memory //
- 67 String header = "Time, hp, X, Y, Z, IT, pm1, pm2, pm4, pm10, ambHum, ambTmp, VOCI, Volt3V, latitude, longitude, Alt, lux";
- 68 String dataString = ""; //holds the entire data string for each read cycles

SENSORS



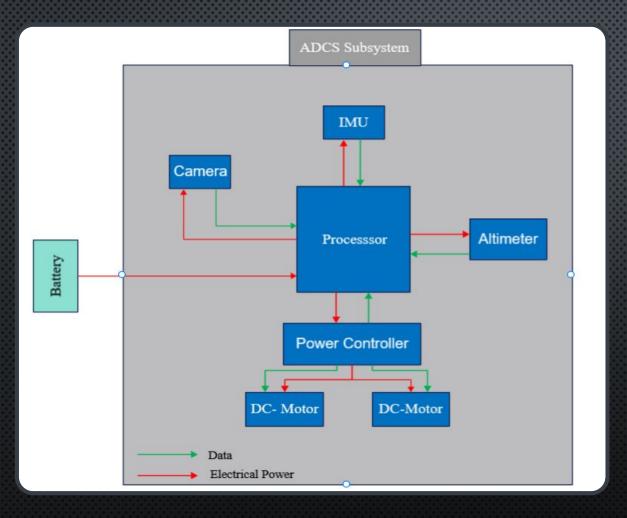
TMP36 (Temp) SEN55 (VOC) MPU6050 (Accelerometer and Gyro)


MPRLS (Pressure)

PA1010D (GPS)

Pressure Over Time During Flight

Battery voltage Over Time During Flight



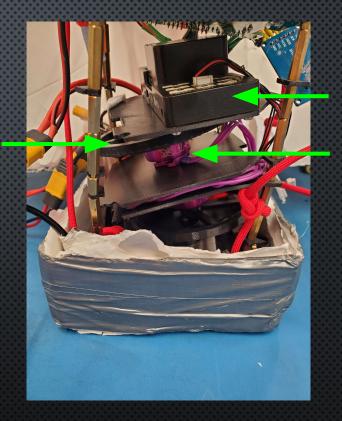
GPS READINGS

Successfully parsed NMEA sentences
 GPS (Arduino PA1010D) recorded readings that are off by -11/2 radians

ADCS SYSTEM BLOCK DIAGRAM

ADCS EXPECTED OUTPUT / DESIGN

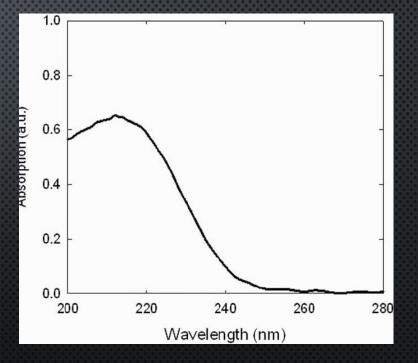
- REACTION WHEELS PLACED VERTICALLY
- MOTORS SPIN THE OPPOSITE DIRECTION
- THE ADCS STABILIZES ON THE YAW AXIS


PX4 used as an autopilot to control the motor and stabilize it

PID CONTROLLER FOR THE SYSTEM

ADCS Analysis

- THE ADCS SUCCESSFULLY ARMED
- ADCS FAILED AT STABILIZING THE ENTIRE PAYLOAD
- DISARM PROTOCOL AT 40,000 FT FAILED
 - Shortened battery life for others
- Drone controller, motors, flywheels remained INTACT



SEED MODULE

MISSION

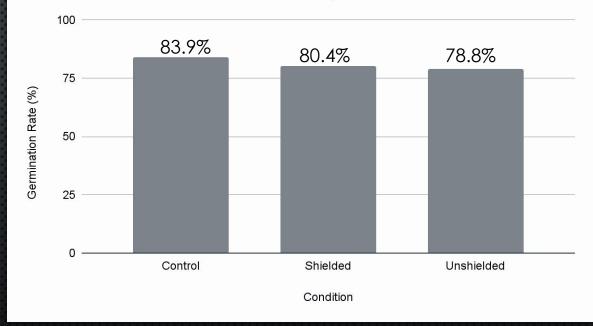
To determine the irradiating effects of a short near space flight on the germination rate of lettuce seeds

- LITTLE GEM LETTUCE SEEDS
- CUVETTES (PMMA) PERMIT MOST OF UV-B RADIATION
- 3 CONFIGURATIONS: SHIELDED, UNSHIELDED, CONTROL
 - Shielded went inside the payload
 - UNSHIELDED WENT ON TOP OF PAYLOAD
 - CONTROL DID NOT FLY

Seed Module Final Placement

Unshielded seeds on top of the payload

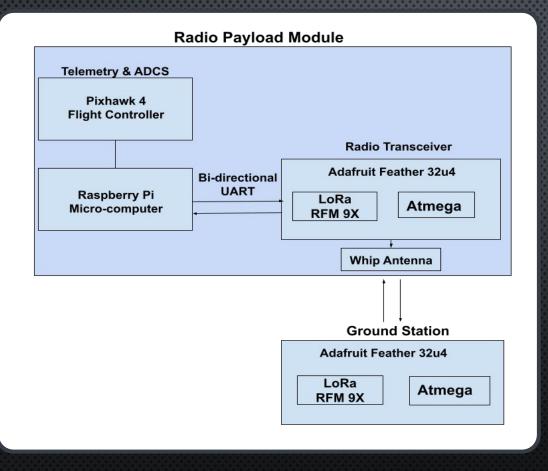
Shielded seeds Inside the Payload


Methodology Shielded Germination Test 96 hr. Unshielded Germination Test 96 hr.

Seed Module Output

96 Hr. Germination Rates of Near Space Flown Lettuce Seeds

Unshielded results ARE NOT significant at the 5% significance level


RADIO

- Adafruit Feather 32u4 (RFM9x) with LoRa
 PACKET RADIO TRANSCEIVER FOR LONG RANGE
 TESTS
- PIXHAWK 4 FLIGHT CONTROLLER USED FOR ADCS AND TRANSFERRING FLIGHT TELEMETRY
- Working in 430 MHz Amateur radio band frequency

Radio transceiver codes GitHub->

RADIO SYSTEM BLOCK DIAGRAM

Radio Analysis

- Successful communication established between radio module:
 - Radio successfully received/transmitted telemetry
- HIGH LOSSES EXPERIENCED:
 - Unstable Communication & receiving frequency decreased
 - LOW STRENGTH ANTENNA CAUSED HIGH LOSS
 - Solution: Different antenna and increased TX
 power
- Power connection problem faced:
 - \circ Connecting radio power supply with raspberry pi
 - Solution: Integrate RFM9x chip on OBC

void loop() delay(1000); Serial.println("Transmitting..."); char* radiopacket = NULL; int bufferSize = 20: int packetIndex = 0: radiopacket = (char*) malloc(bufferSize * sizeof(char)); while (MavSerial.available() > 0) { char t = MaySerial.read(): if (packetIndex >= bufferSize - 1) { bufferSize += 20; radiopacket = (char*) realloc(radiopacket, bufferSize * sizeof(char)); radiopacket[packetIndex++] = t;

Serial.print(t);

Radio Analysis Continued

FUTURE APPLICATION:

• LORA MODULE WILL BE USED AS PAYLOAD FOR COCONUT CUBESAT

Feather LoRa TX Test! LoRa radio init OK! Set Freq to: 430.00 Waiting for packet to complete ... Waiting for reply ... Got reply: KK7LTN # 63 RSSI: -54 Waiting for packet to complete ... Waiting for reply ... Got reply: KK7LTN # 64 **RSST: -54** Waiting for packet to complete ... Waiting for reply... Got reply: KK7LTN # 65 RSSI: -54 Waiting for packet to complete ...

DATA RECEIVED

Conclusions

Pros

- CUBESAT DESIGN ALLOWED FOR
 COMPACT AND MODULAR
- MAIN CODE AND WEBSITE IS REUSABLE FOR FUTURE SEMESTERS
- PCB was versatile and adaptable For future use
- Plant Module contributed to overall understanding of Radiation Effects
- Radio established long range communication

Cons

- Lower structural integrity
- Need more storage or a different board (Raspberry Pi)
- ELECTRICAL SYSTEM NEEDED MORE TESTING
- Plant Module Data ultimately inconclusive/insignificant
- Radio module used was not robust or redundant

Full Name	Position	Subsystem	
Jesse Ontiveros	Officer	Electrical	
Elizabeth Garayzar	Officer	Electrical	
Robert Burton	Member	Electrical	
Noemi Gonzalez	Member	Electrical	
Pranit Kondapalli	Member	Electrical	
Luis Ángel Ruiz	Member	Programming	
Muhammed Topiwala	Member	Programming	
Brian Lee	Member	Programming	
Brandon Bello	Member	Programming	
Jessica Maschino	Member	Mechanical	
Huy Dinh	Member	Mechanical	
Jessica Cruz	Member	Mechanical	
Arlene Morales	Member	Mechanical	
Cindy Phan	Member	Mechanical	
Ben Weber	Member	ADCS	

CREDITS

CREDIT CONTINUED

DR. TOM SHARP

Dr. Jnaneshwar Das

MICHELLE COE

Desiree Crawl

Deborah Blair

ANSR

SDSL

		1
Genevieve Cooper	Team Lead	ALL
Berkeley Adair	Deputy Lead	ALL
Tamim Al-Sharif	Subsystem Lead	Mechanical
Wilson Luu	Subsystem Lead	Programming
Anyell Mata	Subsystem Lead	Electrical
Derek Talbot	Science Director	Plant Module
Vamsy Krishna Nanduri	Graduate Member	ADCS
Naman Tibrewal	Radio Science Director	Radio
Aldrin Inbaraj	Radio	Radio

ASU ASCEND Website

